Estimation in hazard regression models under ordered departures from proportionality
نویسندگان
چکیده
منابع مشابه
Robust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملHazard Estimation under Generalized Censoring
This paper focuses on the problem of the estimation of the cumulative hazard function of a distribution on a general complete separable metric space when the data points are subject to censoring by an arbitrary adapted random set. A problem involving observability of the estimator proposed in [8] and [9] is resolved and a functional central limit theorem is proven for the revised estimator. Sev...
متن کاملLocal polynomial estimation in partial linear regression models under dependence
A regression model whose regression function is the sum of a linear and a nonparametric component is presented. The design is random and the response and explanatory variables satisfy mixing conditions. A new local polynomial type estimator for the nonparametric component of the model is proposed and its asymptotic normality is obtained. Specifically, this estimator works on a prewhitening tran...
متن کاملChecking hazard regression models using pseudo-observations.
Graphical methods for model diagnostics are an essential part of the model fitting procedure. However, in survival analysis, the plotting is always hampered by the presence of censoring. Although model specific solutions do exist and are commonly used, we present a more general approach that covers all the models using the same framework. The pseudo-observations enable us to calculate residuals...
متن کاملEstimation of Count Data using Bivariate Negative Binomial Regression Models
Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2004
ISSN: 0167-9473
DOI: 10.1016/j.csda.2003.12.002